How to prevent Thermophile growth in Milk Evaporators

Karl Kieffer
Tetra Pak Inc.
February 20, 2013
How to create low spore powder

► Minimize growth

► Remove spores/spore formers
Temperature

Fig. 4.9 Classification of bacteria by temperature preference.

Fig. 4.8 Temperature conditions for bacterial growth.
Growth of thermophilic microorganisms during 17 hours of production

Comparison thermophilic count from raw milk to final product

- B1-B7 Raw milk thermodures
- Separator exit
- B1 -B7 After HEX

Time hour

10000
1000
100
10
1
Best Practices

► Minimize size of heat exchangers in critical range
► Keep separation out of critical range
► Allow cleaning of critical areas
Cold Milk Separation

► Application:
 - Good quality cream
 - avoid heat treatment
 - No thermophiles

► Sensitive operation

► Define Temperature
 - 40-42 vs 55-60 Deg F

► Lower capacities

► Skimming efficiency
 - Very temperature dependent
Separation Temp vs Skimming

Temperature not recommended: partially crystallized fat globules
Line concept with cold RO concentration

1. Cold separation
2. Cold RO concentration
 25-30% solids
3. Pasteurization
4. Evaporation
5. Drying
General benefits of solution

Ensuring bacteriological quality

► Keeping temperature low as much as possible
 - Eliminate possibility of bacteria growth

► Reduce size of PHE
 - Less residence time

► Increased solids into evaporator
 - Higher operating temperature = eliminate possibility for growth

= Ensuring low count powders
And we need

- Good quality of milk
Removing Spores

- Destroy spores
- Bactofugation
- Microfiltration
Bacteria

- Sensitive to temperature (+161 F)
- Sensitive to moisture content
- Some cells revert to spore when conditions are unfavorable

Spores

- Resistant to temperature (+250 F)
- Resistant to pH/UV/Pressure
- Resistant to moisture content
- Spore will revert to vegetative cell when conditions improve (time and conditions vary)
Bacteria vs Spores

Seconds vs Degrees F

- Streptococcus Thermophilus
- Thermophilic Spores
Bactofugation ®

- Up to 98% spore removal
- Can install in series
- 0.1-0.3% discharge

Skim Milk → Bactofugated Milk → Bactofugate

SNF 9.1%

SNF 15–20%
Tetra Alcross Bactocatch

- Unit design

- Ceramic membranes for optimum accuracy
- Concentration factor 200 on skimmed milk
- 99.99% reduction of Spores
Summary

- Spore Formers are present in all milk
- Heat treatment allows these to multiply
- Difficult to destroy
- Preventing growth is the surest path to success
- Can be removed with separation technology